How do you find the integral of #f(x)=1/(1-sinx)# using integration by parts?

1 Answer
Apr 10, 2018

#tanx+secx+C#

Explanation:

#intdx/(1-sinx)#

Let's first get this into a more workable form by multiplying through by the conjugate:

#=int1/(1-sinx)*(1+sinx)/(1+sinx)dx#

#=int(1+sinx)/(1-sin^2x)dx#

Recall that #sin^2x+cos^2x=1#:

#=int(1+sinx)/cos^2xdx#

Splitting up the integral by addition:

#=int1/cos^2xdx+intsinx/cos^2xdx#

Rewrite using the identities #secx=1/cosx# and #tanx=sinx/cosx#:

#=intsec^2xdx+intsecxtanxdx#

And then, from the knowledge that #d/dxtanx=sec^2x# and #d/dxsecx=secxtanx#, we see that:

#=tanx+secx+C#

No integration by parts required!