How do you find the integral of #f(x)=( x^2 + 5 ) * cos2x# using integration by parts?

1 Answer
Jul 31, 2017

#I=1/2(x^2+5)sin2x+x/2*cos2x-1/4*sin2x+C, or, #

#I=1/4(2x^2+9)sin2x+x/2*cos2x+C.#

Explanation:

Suppose that, #I=int(x^2+5)cos2xdx.#

We will use the following Rule of Integration by Parts (IBP) :

#" IBP ": intu*vdx=uintvdx-int{(du)/dxintvdx}dx.#

We take, #u=x^2+5, and, v=cos2x.#

#:. (du)/dx=2x, and, intvdx=(sin2x)/2.#

#:. I=(x^2+5)/2*sin2x-int{(2x)(sin2x)/2}dx,#

#=1/2(x^2+5)sin2x-J,"... ...(1), where, "J=intxsin2xdx.#

To evaluate #J,# we reuse IBP, this time, with,

#u=x, v=sin2x rArr (du)/dx=1, intvdx=-1/2*cos2x.#

# :. J=-x/2*cos2x-int{(1)(-1/2*cos2x)}dx,#

#=-x/2*cos2x+1/2intcos2xdx,#

#=-x/2*cos2x+1/2*1/2sin2x,#

#:. J=-x/2*cos2x+1/4*sin2x.........(2).#

From #(1), and, (2),# we have,

#I=1/2(x^2+5)sin2x+x/2*cos2x-1/4*sin2x+C, or, #

#I=1/4(2x^2+9)sin2x+x/2*cos2x+C.#

Enjoy Maths.!