How do you find the integral of #int (1/(1+x^2) ) dx# from negative infinity to 0?

2 Answers
Sep 20, 2015

#pi/2#

Explanation:

let #x=tantheta#
#dx=sec^2theta d(theta)#
#1+tan^2theta=sec^2theta#
#if x=-oo theta=-pi/2#
#if x=9 theta=0#
#int_-oo^01/(1+x^2)dx=int_-(pi/2)^0sec^2theta/sec^2thetad(theta)#
=#int_-(pi/2)^0d(theta)#=#[theta]_(-pi/2)^0=0-(-pi/2)=pi/2#

Sep 21, 2015

This is related to #arctanx#...

#d/(dx)[arctanx] = 1/(1+x^2)#

#:. " " int_a^b 1/(1+x^2)dx = arctanx + C#

#int_(-oo)^(0) 1/(1+x^2) = arctan(0) - arctan(-oo)#

Due to #tanx# having a domain of #(pi/2, pi/2) pm pik# where #k in ZZ#, the inverse, #arctanx#, is a graph with a range of #(-pi/2,pi/2)#, and it looks kind of like a sideways #x^3#, crossing through #(0,0)#.

graph{arctanx [-20, 20, -3.12, 3.12]}

Therefore, as #x->-oo#, you get #-pi/2#, and so:

#= 0 - (-pi/2) = color(blue)(pi/2)#