How do you find the integral of #int 1/sqrt(t^2-36) dt# from 6 to infinity?

1 Answer
Sep 22, 2015

The integral diverges.

Explanation:

#int_6^oo 1/sqrt(t^2-36) dt #

The integrand is not defined at #t=6#, so we need to split the integral and use two limits. I choose to split the integral at #7# (any number greater than #6# will work).

#= int_6^7 1/sqrt(t^2-36) dt+int_7^oo 1/sqrt(t^2-36) dt# #" "# (If the integrals both exist.)

# = lim_(ararr6^+) int_a^7 1/sqrt(t^2-36) dt+lim_(brarroo)int_7^b 1/sqrt(t^2-36) dt# #" "# (If the limits both exist.)

Now we need the indefinite integral

#int 1/sqrt(t^2-36) dt #

Substitute #t = secu#, so that #dt = 6secutanu du# and the integral (after substitution) simplifies to

#int secu du#

Which, if you don't know it, can be found here at Socratic or in most calculus textbooks, etc.

#int secu du = ln(tanu+secu)+C#

Back-substituting for #u# gets us:

#ln(1/6(sqrt(t^2-36)+t))+C#, or, more cleanly:

#ln(sqrt(t^2-36)+t)+C#,

#int_6^oo 1/sqrt(t^2-36) dt#

# = lim_(ararr6^+) [ln(sqrt(7^2-36)+7)-ln(sqrt(a^2-36)+a)]#

# + lim_(brarroo)[ln(sqrt(b^2-36)+b)-ln(sqrt(7^2-36)+7)]#

(If the limits both exist.)

The second limit diverges, so the integral diverges.