How do you find the integral of #int 2x e^ (-x^2)dx# from negative infinity to infinity?

1 Answer
Oct 22, 2015

See the explanation section, below.

Explanation:

First notice that the integrand is continuous on #(-oo,oo)# so we only nee to evaluate two integrals.

Choose a number in #(-oo,oo)# to separate the integral. #0# is usually easy to work with. So

#int_-oo^oo 2x e^ (-x^2)dx = int_-oo^0 2x e^ (-x^2)dx +int_0^oo 2x e^ (-x^2)dx #

(Provided that both integrals exist.)

#int_-oo^0 2x e^ (-x^2)dx = lim_(ararr-oo) int_a^0 2x e^ (-x^2)dx #

# = lim_(ararr-oo) [- e^ (-x^2)]_a^0 #

# = lim_(ararr-oo) [-1- (- e^ (-a^2))] = -1 #

And

#int_0^oo 2x e^ (-x^2)dx = lim_(brarroo) int_0^b 2x e^ (-x^2)dx #

# = lim_(brarroo) [- e^ (-x^2)]_0^b #

# = lim_(brarroo) [(- e^ (-b^2))-(-1)] = 1 #

Both limits DO exists, so,

#int_-oo^oo 2x e^ (-x^2)dx = int_-oo^0 2x e^ (-x^2)dx +int_0^oo 2x e^ (-x^2)dx #

# = -1+1=0#