How do you find the intervals of increasing and decreasing using the first derivative given #y=cos^2(2x)#?
1 Answer
Nov 19, 2016
#y " is" { ("increasing", =>, pi/4 < x < pi/2, (3pi)/4 < x < pi, ...), ("stationary", =>, x=0, x=pi/4, ...), ("decreasing", =>, 0 < x < pi/4, pi/2 < x < (3pi)/2, ..) :} #
Explanation:
#y=cos^2(2x)# is# { ("increasing", <=>, dy/dx> 0), ("stationary", <=>, dy/dx= 0), ("decreasing", <=>, dy/dx< 0) :} #
Differentiating wrt
# dy/dx = 2cos(2x)(-sin(2x))(2) #
# :. dy/dx = -4cos(2x)sin(2x) #
# :. dy/dx = -2sin(4x) #
This is the graph of the derivative :
#y " is" { ("increasing", =>, pi/4 < x < pi/2, (3pi)/4 < x < pi, ...), ("stationary", =>, x=0, x=pi/4, ...), ("decreasing", =>, 0 < x < pi/4, pi/2 < x < (3pi)/2, ..) :} #