How do you find the inverse of #A=##((1, 0, 0, 0), (0, 0, 1, 0), (0,0,0, 1), (0, 1, 0, 0))#?
1 Answer
Jul 16, 2016
Explanation:
Notice what this matrix does as a linear transformation:
#((1, 0, 0, 0),(0,0,1,0),(0,0,0,1),(0,1,0,0))((a),(b),(c),(d)) = ((a),(c),(d),(b))#
It cyclically permutes three ordinates.
Therefore if applied
#A^3 = I#
So the inverse of
#A^2=((1, 0, 0, 0),(0,0,1,0),(0,0,0,1),(0,1,0,0))((1, 0, 0, 0),(0,0,1,0),(0,0,0,1),(0,1,0,0)) = ((1, 0, 0, 0),(0,0,0,1),(0,1,0,0),(0,0,1,0))#