How do you find the inverse of #A=##((3, 4), (5, 6))#?
1 Answer
Feb 13, 2016
Use the general formula for the inverse of a
#((3,4),(5,6))^(-1) = ((-3,2),(5/2,-3/2))#
Explanation:
The inverse of a
#((a, b),(c, d))^(-1) = 1/abs((a, b),(c,d)) ((d, -b),(-c, a))#
where the determinant is given by the formula:
#abs((a, b),(c,d)) = ad-bc#
In our case
#abs((a,b),(c,d)) = abs((3,4),(5,6)) = (3*6)-(4*5) = -2#
So:
#((3,4),(5,6))^(-1) = 1/(-2) ((6,-4),(-5,3))=((-3,2),(5/2,-3/2))#