How do you find the inverse of #f(x) = (2x)/(3x-2)#?

2 Answers

#f(x)=\frac{2x}{3x-2}#

Explanation:

Given that

#f(x)={2x}/{3x-2}#

#3xf(x)-2f(x)=2x#

#(3f(x)-2)x=2f(x)#

#x=\frac{2f(x)}{3f(x)-2}#

Now, substituting #f(x)=x# & #x=f(x)# we get inverse function,

#f(x)=\frac{2x}{3x-2}#

Jul 18, 2018

#f^-1(x)=(2x)/(3x-2)#

Explanation:

#"let "y=(2x)/(3x-2)#

#"rearrange making x the subject"#

#y(3x-2)=2x#

#3xy-2y=2x#

#3xy-2x=2y#

#x(3y-2)=2y#

#x=(2y)/(3y-2)#

#rArrf^-1(x)=(2x)/(3x-2)#