How do you find the inverse of #f( x ) = \frac { 5x - 2} { x + 5}#?

1 Answer
Jan 15, 2018

Substitute #x = f^-1(x)# for every x; this will allow you to make the substitution #f(f^-1(x)) = x#
Solve the resulting equation for #f^-1(x)#
Verify that #f(f^-1(x)) = x# and #f^-1(f(x)) = x#

Explanation:

Given: #f(x) = (5x-2)/(x+5)#

Substitute #x = f^-1(x)# for every x:

#f(f^-1(x)) = (5(f^-1(x))-2)/((f^-1(x))+5)#

Substitute the property #f(f^-1(x)) = x# into the left side:

#x = (5f^-1(x)-2)/(f^-1(x)+5)#

Solve the equation for #f^-1(x)#:

#x(f^-1(x)+5) = 5(f^-1(x))-2#

#xf^-1(x)+5x = 5(f^-1(x))-2#

#xf^-1(x))-5(f^-1(x)) = -5x-2#

#(x-5)f^-1(x)= -5x-2#

#f^-1(x)= (5x+2)/(5-x)#

Verify that #f(f^-1(x)) = x# and #f^-1(f(x)) = x#

Start with:

#f(x) = (5x-2)/(x+5)#

Substitute #x=f^-1(x)#

#f(f^-1(x)) = (5((5x+2)/(5-x))-2)/(((5x+2)/(5-x))+5)#

#f(f^-1(x)) = (5(5x+2)-2(5-x))/(5x+2+5(5-x))#

#f(f^-1(x)) = (25x+10-10+2x)/(5x+2+25-5x)#

#f(f^-1(x)) = (27x)/27#

#f(f^-1(x)) = x larr# verified

Start with:

#f^-1(x)= (5x+2)/(5-x)#

Substitute #x=f(x)#

#f^-1(f(x))= (5((5x-2)/(x+5))+2)/(5-((5x-2)/(x+5)))#

#f^-1(f(x))= (5(5x-2)+2(x+5))/(5(x+5)-5x+2)#

#f^-1(f(x))= (25x-10+2x+10)/(5x+25-5x+2)#

#f^-1(f(x))= (27x)/27#

#f^-1(f(x))= x#

Both are verified #f^-1(x)= (5x+2)/(5-x)#