How do you find the limit as x goes to 0 for the function #(3^x- 8^x)/ (x)#?

2 Answers
Apr 28, 2015

I haven't figured out how to find it algebraically. But here's a non-algebraic solution:

#lim_(xrarr0) (3^x-8^x) = 1-1=0# and, obviously, #lim_(xrarr0) x = 0#

So the limit has indeterminate form #0/0#.

Apply l'Hopital's Rule (it is not algebraic, it involves derivatives)

#d/dx(3^x-8^x) = 3^x ln3 - 8^x ln8# and, of course #d/dx(x) = 1#

So

#lim_(xrarr0) (3^x-8^x)/x = lim_(xrarr0) (3^x ln3-8^x ln8)/1 = ln3 - ln8#

Apr 28, 2015

Remembering the remarkable limit:

#lim_(xrarr0)(a^x-1)/x=lna#

than:

#lim_(xrarr0)(3^x-8^x)/x=lim_(xrarr0)(3^x-1+1-8^x)/x=#

#=lim_(xrarr0)[(3^x-1)/x-(8^x-1)/x]=ln3-ln8=ln(3/8)#.