How do you find the limit of #(1/(x+4)-(1/4))/(x)# as #x->0#?
1 Answer
May 2, 2017
Explanation:
Find a common denominator within the fractions of the numerator:
#lim_(xrarr0)(1/(x+4)-1/4)/x=lim_(xrarr0)(4/(4(x+4))-(x+4)/(4(x+4)))/x#
#=lim_(xrarr0)(4-(x+4))/(x(4(x+4)))=lim_(xrarr0)(-x)/(4x(x+4))#
#=lim_(xrarr0)(-1)/(4(x+4))#
Now the limit can be evaluated since the
#=(-1)/(4(0+4))=-1/16#