How do you find the limit of #(2u+1)^4/(3u^2+1)^2# as #u->oo#?
2 Answers
Explanation:
The trick with these is to factor out the greatest degree of
#lim_(urarroo)(2u+1)^4/(3u^2+1)^2=lim_(urarroo)[u(2+1/u)]^4/[u^2(3+1/u^2)]^2#
#color(white)(lim_(urarroo)(2u+1)^4/(3u^2+1)^2)=lim_(urarroo)(u^4(2+1/u)^4)/((u^2)^2(3+1/u^2)^2)#
#color(white)(lim_(urarroo)(2u+1)^4/(3u^2+1)^2)=lim_(urarroo)(2+1/u)^4/(3+1/u^2)^2#
As
#color(white)(lim_(urarroo)(2u+1)^4/(3u^2+1)^2)=(2)^4/(3)^2#
#color(white)(lim_(urarroo)(2u+1)^4/(3u^2+1)^2)=16/9#
Explanation:
We can confirm this with a graph:
graph{(2x+1)^4/(3x^2+1)^2 [-3.25, 16.75, -4.48, 5.52]}