How do you find the limit of # (e^x-1)^(1/lnx)# as x approaches 0?
1 Answer
Explanation:
To avoid any complications in domain with regard to
#=lim_(x->0^+)e^ln((e^x-1)^(1/ln(x)))#
#=lim_(x->0^+)e^(ln(e^x-1)/ln(x))#
#=e^(lim_(x->0^+)ln(e^x-1)/ln(x))#
(Because
Then, it remains to evaluate
As
#=lim_(x->0^+)(d/dxln(e^x-1))/(d/dxln(x))#
#=lim_(x->0^+)(e^x/(e^x-1))/(1/x)#
#=lim_(x->0^+)(xe^x)/(e^x-1)#
(As this leads to a
#=lim_(x->0^+)(d/dx(xe^x))/(d/dx(e^x-1))#
#=lim_(x->0^+)(xe^x+e^x)/e^x#
#=lim_(x->0^+)(x+1)#
#=1#
Substituting back into the original problem, we find our answer:
#=e^(lim_(x->0^+)ln(e^x-1)/ln(x))#
#=e^1#
#=e#