# How do you find the limit of #\lim _ { x \rightarrow - 2} \frac { x + 2} { x ^ { 2} + 6x + 8}#?

##### 1 Answer

#### Explanation:

Notice that plugging in

However, notice that we can factor the denominator of the fraction:

#lim_(xrarr-2)(x+2)/(x^2+6x+8)=lim_(xrarr-2)(x+2)/((x+2)(x+4))#

Now we can see why plugging in

#=lim_(xrarr-2)1/(x+4)#

In other words, the function *except* at the point *should* lie, which can be found by plugging

#=1/(-2+4)=1/2#