How do you find the Limit of #ln [(x^.5) + 5] /(lnx)# as x approaches infinity? Calculus Limits Determining Limits Algebraically 1 Answer Eddie Aug 15, 2016 #1/2# Explanation: #lim_(x to oo) ln [(sqrt x) + 5] /(lnx)# this is #oo/oo# indeterminate so we can use L'Hopital #=lim_(x to oo) (1/(sqrt x + 5) 1/2 x^(-1/2) )/(1/x)# #= 1/2 lim_(x to oo) (1/(sqrt x + 5)* x^(1/2) )# #= 1/2 lim_(x to oo) (1/(1+ 5x^(-1/2)) )# #= 1/2 (lim_(x to oo) 1)/(lim_(x to oo) 1+ 5/sqrt x) # #= 1/2 * 1/1 = 1/2# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 2893 views around the world You can reuse this answer Creative Commons License