How do you find the limit of #sin^2(3t)/t^2# as #t->0#?
1 Answer
Explanation:
graph{((sin(3x))/x) * ((sin(3x))/x) [-9 9, -0.5, 10.5]}
# lim_(t rarr 0) sin^2(3t)/t^2 = lim_(t rarr 0) (sin(3t)/t)^2 #
# :. lim_(t rarr 0) sin^2(3t)/t^2 = (lim_(t rarr 0) sin(3t)/t)^2 #
# :. lim_(t rarr 0) sin^2(3t)/t^2 = (lim_(t rarr 0) 3/3sin(3t)/t)^2 #
# :. lim_(t rarr 0) sin^2(3t)/t^2 = (3lim_(t rarr 0) 1/3sin(3t)/t)^2 #
# :. lim_(t rarr 0) sin^2(3t)/t^2 = (3)^2(lim_(t rarr 0) sin(3t)/(3t))^2 #
# :. lim_(t rarr 0) sin^2(3t)/t^2 = 9 (lim_(t rarr 0) sin(3t)/(3t))^2 #
Let
# :. lim_(t rarr 0) sin^2(3t)/t^2 = 9 (lim_(theta rarr 0) sin(theta)/(theta))^2 #
And,
Hence,
# :. lim_(t rarr 0) sin^2(3t)/t^2 = 9 (1)^2 = 9 #
Which is consistent with the above graph.