How do you find the limit of #(sqrt (1+9x)- sqrt (1-8x))/ x# as x approaches 0?

2 Answers
Jul 27, 2015

I found: #17/2#

Explanation:

If you try directly you get #0/0#:
enter image source here

Jul 27, 2015

"Rationalize" the numerator.

Explanation:

This is a trick (technique, method) that is very useful in calculus.

If we multiply #(sqrta-sqrtb)(sqrta+sqrtb)#, we get rid of the square roots and can try to simplify.

#(sqrta-sqrtb)(sqrta+sqrtb) = a-b#

In this case:

#(sqrt (1+9x)- sqrt (1-8x))/ x#

We will multiply by #1# in the form #(sqrt (1+9x) + sqrt (1-8x))/ (sqrt (1+9x) + sqrt (1-8x))#

We get:

#((sqrt (1+9x)- sqrt (1-8x)))/ x *((sqrt (1+9x) + sqrt (1-8x)))/ ((sqrt (1+9x) + sqrt (1-8x)))#

# = ((1+9x)-(1-8x))/(x(sqrt (1+9x) + sqrt (1-8x)))#

# = (17x)/(x(sqrt (1+9x) + sqrt (1-8x)))#

# = 17/(sqrt (1+9x) + sqrt (1-8x))#

Now we can evaluate the limit by substitution.

#lim_(xrarr0)(sqrt (1+9x)- sqrt (1-8x))/ x = lim_(xrarr0)17/(sqrt (1+9x) + sqrt (1-8x))#

# = 17/(sqrt(1+9(0))+sqrt(1-8(0)))#

# = 17/(sqrt1+sqrt1) = 17/2#

In a way, we have 'traded' a subtraction in the numerator that goes to #0# for an addition in the denominator that does not go to #0#.