How do you find the limit of #sqrt(x-4)/(x-16)# as x approaches 16?
1 Answer
Mar 23, 2016
Explanation:
We can factor
Since differences of squares take the pattern
#a^2=x" "=>" "a=sqrtx#
#b^2=16" "=>" "b=4#
Yielding:
#x-16=(sqrtx+4)(sqrtx-4)#
The problem then becomes:
#lim_(xrarr16)(sqrtx-4)/(x-16)=lim_(xrarr16)(sqrtx-4)/((sqrtx+4)(sqrtx-4))=lim_(xrarr16)1/(sqrtx+4)#
Evaluate the limit by plugging in
#lim_(xrarr16)1/(sqrtx+4)=1/(sqrt16+4)=1/(4+4)=1/8#