#lim_{t to 0} (t^2+5t) / (cosh(t)-1)#
currently this is #0/0#, indeterminate, so we can apply Lhopital's Rule
#= lim_{t to 0} (2t+5) / (sinh(t))#
#= lim_{t to 0} 2 (t) / (sinh(t)) +5 / (sinh(t)#
From L'Hopital: # lim_{t to 0} 2 (t) / (sinh(t)) = 2 lim_{t to 0} 1 / (cosh(t)) = 2#
#implies 2 + lim_{t to 0} 5 / (sinh(t)#
Now, # lim_{t to 0} 5 / (sinh(t)# is 2 sided limit ie
#= lim_{t to 0^-} 5 / sinh(t) = - oo#
#= lim_{t to 0^+} 5 / sinh(t) = oo#
so
#lim_{t to 0^-} (t^2+5t) / (cosh(t)-1) = -oo#
#lim_{t to 0^+} (t^2+5t) / (cosh(t)-1) = oo#