How do you find the limit of #(x^2 + 3) / (x - 2)# as x approaches 2-?
1 Answer
Apr 28, 2016
Explanation:
Given,
#lim_(xrarr2^-)(x^2+3)/(x-2)#
Break apart the fraction.
#=lim_(xrarr2^-)(x^2+3)(1/(x-2))#
Recall that "the limit of a product is the product of the limits, provided the limits exist."
#=lim_(xrarr2^-)x^2+3*lim_(xrarr2^-)1/(x-2)#
Substitute
#=lim_(xrarr2^-)(2^-)^2+3*lim_(xrarr2^-)1/((2^-)-2)#
#=lim_(xrarr2^-)4+3*lim_(xrarr2^-)1/0^-#
#=lim_(xrarr2^-)7*-infty#
Recall that "the limit of a constant is equal to the constant."
#=7*-infty#
#=-infty#