How do you find the limit of #(x^2 - 64) / ((x^(1/3)) -2)# as x approaches #8#?
1 Answer
Sep 11, 2016
Explanation:
First, factor the numerator as a difference of squares, which takes the form
#lim_(xrarr8)(x^2-8^2)/(x^(1/3)-2)#
#=lim_(xrarr8)((x+8)(x-8))/(x^(1/3)-2)#
Now, factor
#=lim_(xrarr8)((x+8)((x^(1/3))^3-2^3))/(x^(1/3)-2)#
#=lim_(xrarr8)((x+8)(x^(1/3)-2)(x^(2/3)+2x^(1/3)+4))/(x^(1/3)-2)#
The
#=lim_(xrarr8)((x+8)(x^(2/3)+2x^(1/3)+4))#
Plug in
#=(8+8)(8^(2/3)+2(8^(1/3))+4)#
#=16(4+2(2)+4)#
#=16(12)#
#=192#