How do you find the limit of #(x+4x^2+sinx)/(3x)# as x approaches 0?

2 Answers
Mar 12, 2015

If you try to calculate the limit directly you'll get the form #0/0# that is not good!

Try using de l'Hospital Rule deriving separately numerator and denominator and then do the limit; you get:

#lim_(x->0)(1+8x+cos(x))/3=2/3#

Mar 13, 2015

To evaluate this limit without l'Hopital's rule, re-write the expression as:

#(x+4x^2+sinx)/(3x)=1/3((x+4x^2)/x+sinx/x)#

We do this because we can now re=write the limit:

#lim_(xrarr0)(x+4x^2+sinx)/(3x)=1/3lim_(xrarr0)((x+4x^2)/x+sinx/x)#

#=1/3lim_(xrarr0)((x(1+4x))/x+sinx/x)#

#=1/3lim_(xrarr0)((1+4x)+sinx/x)#

#=1/3(1+1)=2/3#