How do you find the limit of #(x-5)/(x^2-25)# as #x->5^-#?
2 Answers
Explanation:
#lim_(x->5^-) (x-5)/(x^2-25) = lim_(x->5^-) color(red)(cancel(color(black)((x-5))))/(color(red)(cancel(color(black)((x-5))))(x+5))#
#color(white)(lim_(x->5^-) (x-5)/(x^2-25)) = lim_(x->5^-) 1/(x+5)#
#color(white)(lim_(x->5^-) (x-5)/(x^2-25)) = 1/(5+5)#
#color(white)(lim_(x->5^-) (x-5)/(x^2-25)) = 1/10#
Explanation:
Substituting
let us think about another way to find the limit.
Here, Factorizing
Factorization
polynomial identity.