How do you find the limit of # (x+sinx)/(2x-sinx) # as x approaches infinity? Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Jun 1, 2016 #lim_{x->infty}(x+sin(x))/(2x-sin(x)) = 1/2# Explanation: #lim_{x->infty}(x+sin(x))/(2x-sin(x)) = lim_{x->infty}(1+sin(x)/x)/(2-sin(x)/x) = 1/2# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 7902 views around the world You can reuse this answer Creative Commons License