How do you find the slope of a tangent line to the graph of the function #f(x) = x^2/(x+1)# at (2, 4/3)?

1 Answer
Dec 26, 2016

#"slope "=8/9#

Explanation:

#color(orange)"Reminder"#

The slope of the tangent at x = a on f(x) is f'(a)

To differentiate f(x) use the #color(blue)"quotient rule"#

#"given " f(x)=(g(x))/(h(x))" then "#

#color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(2/2)|)))#

#"here " g(x)=x^2rArrg'(x)=2x#

#"and " h(x)=x+1rArrh'(x)=1#

#rArrf'(x)=((x+1).2x-x^2 .1)/(x+1)^2=(2x^2+2x-x^2)/(x+1)^2#

#=(x^2+2x)/(x+1)^2#

#rArrf'(2)=(4+4)/3^2=8/9#