How do you find the solutions of this? #3cosxsinx-sin^2x=1#
#3cosxsinx-sin^2x=1#
1 Answer
Feb 11, 2018
See the answer below...
Explanation:
#3cosxsinx-sin^2x=1#
#=>(3cosxsinx)/cos^2x-sin^2x/cos^2x=1/cos^2x#
#=>3tanx-tan^2x=sec^2x#
#=>3tanx-tan^2x=1+tan^2x#
#=>2tan^2x-3tanx+1=0#
#=>2tan^2x-2tanx-tanx+1=0#
#=>2tanx(tanx-1)-1(tanx-1)=0#
#=>(2tanx-1)(tanx-1)=0# Either,
#(2tanx-1)=0#
#=>tanx=1/2=tanalpha#
#=>color(red)(ul(bar(|color(green)(x=npi+alpha)|# #" "# where#" "alpha=tan^-1(1/2)" ; "n in I# or,
#tanx-1=0#
#=>tanx=1#
#=>tanx=tan(pi/4)#
#=>color(red)(ul(bar(|color(green)(x=npi+(pi/4))|))" "[n in I]# Hope it helps...
Thank you...