How do you find the sum of the arithmetic series #Sigma(11+2k)# from k=1 to 150?

1 Answer
Nov 12, 2016

# S_150 = sum_(k=1)^150(11+2k) = 24300 #

Explanation:

Method 1 - Using the AP Series

The sum of the first #n# terms of an AP whose terms are

# a, a+d, a+2d, ... , a+(n-1)d #

is given by

# S_n = n/2{2a+(n-1)d} #

So for # sum_(k=1)^150(11+2k) # the terms are 13, 15, 17, ... , 311

So the terms for an AP with # n=150, a=13,d=2#

# :. S_150 = 150/2{2(13)+(149)(2)} #
# :. S_150 = 75(26+298) #
# :. S_150 = 75(324) #
# :. S_150 = 24300 #

Method 2 - Using the standard results:

# sum_(r=1)^n r = 1/2n(n+1) #

We have;

# sum_(k=1)^150(11+2k) = sum_(k=1)^150(11) + 2sum_(k=1)^150(k) #
# :. sum_(k=1)^150(11+2k) = (150)(11) + 2 1/2(150)(151) #
# :. sum_(k=1)^150(11+2k) = 1650 + 22650#
# :. sum_(k=1)^150(11+2k) = 24300 #, as before

Method 3 - Derive a General Formula

# sum_(k=1)^n(11+2k) = sum_(k=1)^n(11) + 2sum_(k=1)^n(k) #
# sum_(k=1)^n(11+2k) = 11n + 2 1/2n(n+1) #
# sum_(k=1)^n(11+2k) = 11n + n(n+1) #
# sum_(k=1)^n(11+2k) = n(11 + n + 1) #
# sum_(k=1)^n(11+2k) = n(n+12) #

And when #n=150 => sum_(k=1)^150(11+2k) = (150)(162) = 24300#, as before