How do you find the sum of the infinite geometric series given #-8-4-2-...#?

1 Answer
May 19, 2018

#-8-4-2-... = -16#

Explanation:

Note that the given series is a geometric series with initial term #-8# and common ratio:

#(-4)/(-8) = (-2)/(-4) = 1/2#

We find:

#-8-4-2-... = (2-1)(-8-4-2-...)#

#color(white)(-8-4-2-...) = (-16-8-4-...) - (-8-4-2-...)#

#color(white)(-8-4-2-...) = -16#

...assuming the sum converges.

In the case of a general infinite series, we should usually look at partial sums and make sure that they converge to a limit.

The general term of a geometric series can be written:

#a_n = a * r^(n-1)#

where #a# is the initial term and #r# the common ratio.

Then we find:

#(1-r) sum_(n=1)^N a_r=(1-r) sum_(n=1)^N a * r^(n-1)#

#color(white)((1-r) sum_(n=1)^N a_r)=sum_(n=1)^N a * r^(n-1) - r sum_(n=1)^N a * r^(n-1)#

#color(white)((1-r) sum_(n=1)^N a_r)=sum_(n=1)^N a * r^(n-1) - sum_(n=2)^(N+1) a * r^(n-1)#

#color(white)((1-r) sum_(n=1)^N a_r)=a + color(red)(cancel(color(black)(sum_(n=2)^N a * r^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^N a * r^(n-1)))) - a * r^N#

#color(white)((1-r) sum_(n=1)^N a_r)=a(1-r^N)#

Then (assuming #r != 1#) dividing both ends by #(1-r)# we find:

#sum_(n=1)^N a_r = (a(1-r^N))/(1-r)#

Note that if and only if #abs(r) < 1# then #lim_(N->oo) r^N = 0# and we find:

#sum_(n=1)^oo a_r = lim_(N->oo) sum_(n=1)^N a_r#

#color(white)(sum_(n=1)^oo a_r) = lim_(N->oo) (a(1-r^N))/(1-r)#

#color(white)(sum_(n=1)^oo a_r) = a/(1-r)#

So a geometric series has a convergent sum if and only if its common ratio is of absolute value less than #1#.

In our example with #a=-8# and #r=1/2# we find:

#sum_(n=1)^oo (-8)(1/2)^(n-1) = (-8)/(1-1/2) = -16#