How do you find the taylor series for #e^x - e^-x#?

1 Answer
Sep 7, 2015

Taylor series centered at a would be
#e^a {1 + (x-a) +(x-a)^2 /(2!) + ........} - e^-a {1- (x-a)+ (x-a)^2 /(2!) .....}#

Explanation:

Taylor series for f(x)= #e^x -e^-x#, centered at x=a would be
#f(x)= f(a)+ (x-a)f'(a)+(x-a)^2 (f'' (a))/(2!)# +.......

#f(a)= e^a -e^-a#
#f'(a)=e^a +e^-a#
#f''(a)= e^a -e^-a# and so on.......
#f(x)=e^a -e^-a +(x-a)(e^a +e^-a)+ (x-a)^2 (e^a-e^-a)/(2!)#+-----

=#e^a {1 + (x-a) +(x-a)^2 /(2!) + ........} - e^-a {1- (x-a)+ (x-a)^2 /(2!) .....}#