How do you find the value for #sin2theta#, #cos2theta#, and #tan2theta# and the quadrant in which #2theta# lies given #costheta=5/13# and #theta# is in quadrant I?

1 Answer
Oct 5, 2016

#sin2theta=120/169 ; cos2theta=-119/169 ; tan2theta=-120/119 and 2 theta=134.76^0# lies on 2nd quadrant.

Explanation:

We know #cos theta=b/h ;sin theta=(op)/(h)#Here #b=5 ; h=13; :. op=sqrt(13^2-5^2)=12 :. sin theta=12/13 = :. sin(2theta)=2sintheta*costheta=2*5/13*12/13= 120/169 ; cos2theta=cos^2theta-sin^2theta = 25/169-144/169= -119/169 ; tan2theta=sin(2theta)/cos(2theta)=-(120/169*169/119)= -120/119#
#2theta = 134.76^0# lies on 2nd quadrant since #cos(2theta)= -119/169# as #cos2theta# is ngative in 2nd quadrant. [Ans]