How do you find the value of #( \frac { 216} { 1000} ) ^ { \frac { 2} { 3} }#?

3 Answers
Jul 6, 2017

#= 9/25#

Explanation:

One of the laws of indices states:

#rootq x^p = x^(p/q)#

So, #(216/1000)^(2/3)# means the same as #root3(216/1000)^2#

Note that #216 and 1000# are both perfect cubes.

#216 = 6^3 and 1000 = 10^3#

#root3((216/1000))^2" "larr# find the cube roots first

#= (6/10)^2" "larr# simplify the fraction

#=(3/5)^2" "larr# square the fraction

#= 9/25#

Jul 6, 2017

#9/25#

Explanation:

#( \frac { 216} { 1000} ) ^ { \frac { 2} { 3} }#

Solution

#( \frac { 216} { 1000} ) ^ { \frac { 2} { 3} }# #rArr# #3sqrt(216/1000)^2#

Cube root of #216 = 6#

Cube root of #1000 = 10#

#:.# #(6/10)^2 = 36/100 = cancel36^9/cancel100_25 = 9/25 -> Answer#

Jul 6, 2017

#color(magenta)(9/25#

Explanation:

#(216/1000)^(2/3)#

#:.=((3^3*cancel(2^3)^1)/(5^3*cancel(2^3)^1))^(2/3)#

#:.=3^(6/3)/(5^(6/3))#

#:.=3^2/5^2#

#:.=color(magenta)(9/25#

Another method:

#(a/b)^(2/3)=root3((a/b)^2)#

#:.=root3((216/1000)^2)#

#:.=root3(46656/1000000)#

#:.=root3((3*3*3*3*3*3*cancel2*cancel2*cancel2*cancel2*cancel2*cancel2)/(5*5*5*5*5*5*cancel2*cancel2*cancel2*cancel2*cancel2*cancel2))#

#:.root3(a)*root3(a)*root3(a)=a#

#:.=3^2/5^2#

#:.color(magenta)(=9/25)#