How do you find the value of #\sum _ { n } ^ { \infty } \frac { n ^ { 2} } { 5^ { n } } ( x - 1) ^ { n }#?

1 Answer
Jan 5, 2018

See below.

Explanation:

#sum_(k=0)^oo k^2y^k = yd/(dy)(yd/(dy)(sum_(k=0)^oo y^k))#

now making #y = (x-1)/5# and assuming #abs y < 1# we have

#sum_(k=0)^oo y^k = 1/(1-y)# and then

#sum_(k=0)^oo k^2y^k =-(y (1 + y))/(y-1)^3# or

#\sum _ { n } ^ { \infty } \frac { n ^ { 2} } { 5^ { n } } ( x - 1) ^ { n } = (5 (1 - x) (4 + x))/(x-6)^3#