How do you find z such that #(4−3i) /z+(−5+2i) = (−2−2i) #?
1 Answer
Explanation:
Write as:
#(4-3i)/z=(-2-2i)+(5-2i)#
#(4-3i)/z=(3-4i)/1#
Turn everything upside down:
#z/(4-3i)=1/(3-4i)#
#z=(4-3i)/(3-4i)#
Multiply by
#z=(4-3i)/(3-4i)xx(3+4i)/(3+4i)=((4-3i)(3+4i))/((3-4i)(3+4i))#
Distribute:
#z=(12+16i-9i-12i^2)/(9+12i-12i-16i^2)=(12+7i-12i^2)/(9-16i^2)#
Since
#z=(12+7i-12(-1))/(9-16(-1)) = (12+7i+12)/(9+16)=(24+7i)/25#
#z=24/25+7/25i#