How do you fully simplify #(x^2-8x+15)/(2x^2-7x-15)#?

1 Answer
Nov 16, 2016

#(x^2-8x+15)/(2x^2-7x-15) = (x-3)/(2x+3)#

with exclusion #x!=5#

Explanation:

Note that:

#x^2-8x+15 = x^2-8x+16-1#

#color(white)(x^2-8x+15) = (x-4)^2-1^2#

#color(white)(x^2-8x+15) = ((x-4)-1)((x-4)+1)#

#color(white)(x^2-8x+15) = (x-5)(x-3)#

So the numerator has zeros #x=3# and #x=5#

Are either of these zeros of the denominator?

#2(color(blue)(3)^2)-7(color(blue)(3))-15 = 18-21-15 = -18#

#2(color(blue)(5)^2)-7(color(blue)(5))-15 = 50-35-15 = 0#

So #x=5# is a zero and #(x-5)# a factor of the denominator:

#2x^2-7x-15 = (x-5)(2x+3)#

Hence:

#(x^2-8x+15)/(2x^2-7x-15) = ((color(red)(cancel(color(black)(x-5))))(x-3))/((color(red)(cancel(color(black)(x-5))))(2x+3))#

#color(white)((x^2-8x+15)/(2x^2-7x-15)) = (x-3)/(2x+3)#

with exclusion #x!=5#