How do you fully simplify #(x^2-8x+15)/(2x^2-7x-15)#?
1 Answer
Nov 16, 2016
with exclusion
Explanation:
Note that:
#x^2-8x+15 = x^2-8x+16-1#
#color(white)(x^2-8x+15) = (x-4)^2-1^2#
#color(white)(x^2-8x+15) = ((x-4)-1)((x-4)+1)#
#color(white)(x^2-8x+15) = (x-5)(x-3)#
So the numerator has zeros
Are either of these zeros of the denominator?
#2(color(blue)(3)^2)-7(color(blue)(3))-15 = 18-21-15 = -18#
#2(color(blue)(5)^2)-7(color(blue)(5))-15 = 50-35-15 = 0#
So
#2x^2-7x-15 = (x-5)(2x+3)#
Hence:
#(x^2-8x+15)/(2x^2-7x-15) = ((color(red)(cancel(color(black)(x-5))))(x-3))/((color(red)(cancel(color(black)(x-5))))(2x+3))#
#color(white)((x^2-8x+15)/(2x^2-7x-15)) = (x-3)/(2x+3)#
with exclusion