First, use these rules for exponents to combine the #y# terms in the denominator:
#a = a^color(red)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#
#(3x^-3)/(2x^2y^-2 * y) => (3x^-3)/(2x^2y^color(red)(-2) * y^color(blue)(1)) => (3x^-3)/(2x^2y^(color(red)(-2)+color(blue)(1))) => (3x^-3)/(2x^2y^-1)#
Next, use this rule of exponents to eliminate the negative #x# exponent:
#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#
#(3x^color(red)(-3))/(2x^color(blue)(2)y^-1) => 3/(2x^(color(blue)(2)-color(red)(-3))y^-1) => 3/(2x^(color(blue)(2)+color(red)(3))y^-1) => 3/(2x^5y^-1)#
Now, use these rules of exponents to eliminate the negative #y# exponent:
#1/x^color(red)(a) = x^color(red)(-a)# and #a^color(red)(1) = a#
#3/(2x^5y^color(red)(-1)) => (3y^color(red)(-
-1))/(2x^5) => (3y^color(red)(1))/(2x^5) => (3y)/(2x^5)#