How do you graph the function #y=-x+9#?

1 Answer

See a solution process below:

Explanation:

Substitute some points for #x# to obtain corresponding values for #y#. Such as:

#x = -10# Then #y = - -10 + 9 = 10 + 9 = 19# gives: #(-10, 19)#

#x = -5# Then #y = - -5 + 9 = 5 + 9 = 14# gives: #(-5, 14)#

#x = 0# Then #y = -0 + 9 = 9# gives: #(0, 9)#

#x = 5# Then #y = -5 + 9 = 4# gives: #(5, 4)#

#x = 10# Then #y = -10 + 9 = -1# gives: #(10, -1)#

Now, plot the points and draw a line through the points:

graph{(y+x- 9)((x+10)^2+(y-19)^2-1)((x+5)^2+(y-14)^2-1)((x+0)^2+(y-9)^2-1)((x-5)^2+(y-4)^2-1)((x-10)^2+(y+1)^2-1)=0 [-40, 40, -20, 20]}