#color(blue)("The different way to find "x_("vertex"))#
Write as: #y=1/2(x^2+8x)+5#
Axis of symmetry #->x_("vertex")=(-1/2)xx8= -4#
#y_("vertex")=1/2(-4)^2+4(-4)+5 = -3#
Vertex#->(x,y)=(-4,-3)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("The formula method for x-intercepts")#
Given: #y=1/2x^2+4x+5#
#y=ax^2+bx+c => x=(-b+-sqrt(b^2-4ac))/(2a)#
This really is worth committing to memory.
Where #a=1/2"; "b=4"; "c=5#
#x=(-4+-sqrt(4^2-4(1/2)(5)))/(2(1/2))#
#x=-4+-sqrt(6)larr" Exact value"#
#x~~-1.55 and -6.45# to 2 decimal places
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the vertex")#
#x_("vertex")# is mid point of intercepts which is:
#((-4-sqrt(6))+(-4+sqrt(6)))/2 =-4#
by substitution #y_("vertex")=-3#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the y-intercept")#
It is the value of the constant #c=5#