# How do you graph #y=-3x+3# using a table?

##### 1 Answer

#### Answer:

See explanation.

#### Explanation:

Create a blank table with two columns. Label the first column

#[(ul(" "x" "),ul("-"3x+3)),(,),(,),(,),(,),(,)]#

Next, **choose some values of #x#** and fill these in the

#[(ul(" "x" "),ul("-"3x+3)),("-"2,),("-"1,),(0,),(1,),(2,)]#

Then, find the matching values of

#color(white)="-"3color(red)x+3#

#="-"3(color(red)("-"2))+3#

#=6+3#

#=9#

Once the table is full, it should look something like this:

#[(ul(" "x" "),ul("-"3x+3)),("-"2,9),("-"1,6),(0,3),(1,0),(2,"-"3)]#

These are some

graph{((x+2)^2+(y-9)^2-0.025)((x+1)^2+(y-6)^2-0.025)((x)^2+(y-3)^2-0.025)((x-1)^2+(y)^2-0.025)((x-2)^2+(y+3)^2-0.025)=0 [-15.55, 15.63, -4.79, 10.8]}

From here, the line that passes through these points is easy to see. We simply connect the dots with a straight line to finish the job:

graph{(-3x+3-y)((x+2)^2+(y-9)^2-0.025)((x+1)^2+(y-6)^2-0.025)((x)^2+(y-3)^2-0.025)((x-1)^2+(y)^2-0.025)((x-2)^2+(y+3)^2-0.025)=0 [-15.55, 15.63, -4.79, 10.8]}

And we're done!