How do you integrate #1/x^2#?

1 Answer
Jul 9, 2016

#int1/(x^2)dx=-1/x+C#

Explanation:

This function can be written as #x^-2#.

To integrate such function we can use the general formula:

#int x^alpha=x^(alpha+1)/(alpha+1)# for any rational #alpha#

Using this formula we get:

#int1/(x^2)dx=intx^(-2)dx=x^-1/(-1)+C=-1/x+C#