How do you integrate #1/(x^2 - 3)#?
2 Answers
Explanation:
Decompose
#1/(x^2-3)=1/((x+sqrt3)(x-sqrt3))=A/(x+sqrt3)+B/(x-sqrt3)#
#1/(x^2-3)=(A(x-sqrt3)+B(x+sqrt3))/(x^2-3)#
#(0x+1)/(x^2-3)=(x(A+B)+(-sqrt3A+sqrt3B))/(x^2-3)#
Thus:
#{(A+B=0),(-sqrt3A+sqrt3B=1):}#
Multiplying the first equation by
#{(sqrt3A+sqrt3B=0),(-sqrt3A+sqrt3B=1):}#
Adding them gives
Since
Thus:
#intdx/(x^2-3)=-1/(2sqrt3)intdx/(x+sqrt3)+1/(2sqrt3)intdx/(x-sqrt3)#
#=-1/(2sqrt3)lnabs(x+sqrt3)+1/(2sqrt3)lnabs(x-sqrt3)#
#=(lnabs(x-sqrt3)-lnabs(x+sqrt3))/(2sqrt3)#
#=1/(2sqrt3)lnabs((x-sqrt3)/(x+sqrt3))+C#
Explanation:
#I=intdx/(x^2-3)#
Let
#I=int(sqrt3secthetatanthetad theta)/(3sec^2theta-3)=sqrt3/3int(secthetatanthetad theta)/(sec^2theta-1)#
Note that
#I=1/sqrt3int(secthetatanthetad theta)/tan^2theta=1/sqrt3int(secthetad theta)/tantheta=1/sqrt3int1/costheta(costheta/sintheta)d theta=1/sqrt3intcscthetad theta#
This is a common integral:
#I=-1/sqrt3lnabs(csctheta+cottheta)#
Note that
Thus:
#I=-1/sqrt3lnabs(x/sqrt(x^2-3)+sqrt3/sqrt(x^2-3))#
#I=-1/sqrt3lnabs((x+sqrt3)/sqrt(x^2-3))#
(Technical note. This almost could be a final answer, but there is one problem, which is that
#I=-1/sqrt3lnabs((x+sqrt3)/sqrt(abs(x^2-3)))#
This is a proper final answer. However, we can simplify it rather sneakily:
#I=-1/sqrt3lnabs(sqrt((x+sqrt3)^2/(abs(x^2-3)))#
The square root is a
#I=-1/(2sqrt3)lnabs((x+sqrt3)^2/(x^2-3))#
#I=-1/(2sqrt3)lnabs((x+sqrt3)^2/((x+sqrt3)(x-sqrt3)))#
#I=-1/(2sqrt3)lnabs((x+sqrt3)/(x-sqrt3))#
We can also use the previous rule in reverse:
#I=1/(2sqrt3)lnabs((x-sqrt3)/(x+sqrt3))+C#