How do you integrate #1/(x^2 - 3)#?

2 Answers
Sep 24, 2016

#=1/(2sqrt3)lnabs((x-sqrt3)/(x+sqrt3))+C#

Explanation:

Decompose #1/(x^2-3)# using partial fractions:

#1/(x^2-3)=1/((x+sqrt3)(x-sqrt3))=A/(x+sqrt3)+B/(x-sqrt3)#

#1/(x^2-3)=(A(x-sqrt3)+B(x+sqrt3))/(x^2-3)#

#(0x+1)/(x^2-3)=(x(A+B)+(-sqrt3A+sqrt3B))/(x^2-3)#

Thus:

#{(A+B=0),(-sqrt3A+sqrt3B=1):}#

Multiplying the first equation by #sqrt3#:

#{(sqrt3A+sqrt3B=0),(-sqrt3A+sqrt3B=1):}#

Adding them gives #2sqrt3B=1# so #B=1/(2sqrt3)#.

Since #A+B=0#, we see that #A=-1/(2sqrt3)#.

Thus:

#intdx/(x^2-3)=-1/(2sqrt3)intdx/(x+sqrt3)+1/(2sqrt3)intdx/(x-sqrt3)#

#=-1/(2sqrt3)lnabs(x+sqrt3)+1/(2sqrt3)lnabs(x-sqrt3)#

#=(lnabs(x-sqrt3)-lnabs(x+sqrt3))/(2sqrt3)#

#=1/(2sqrt3)lnabs((x-sqrt3)/(x+sqrt3))+C#

Oct 2, 2016

#1/(2sqrt3)lnabs((x-sqrt3)/(x+sqrt3))+C#

Explanation:

#I=intdx/(x^2-3)#

Let #x=sqrt3sectheta#, implying that #dx=sqrt3secthetatanthetad theta#:

#I=int(sqrt3secthetatanthetad theta)/(3sec^2theta-3)=sqrt3/3int(secthetatanthetad theta)/(sec^2theta-1)#

Note that #sec^2theta-1=tan^2theta#:

#I=1/sqrt3int(secthetatanthetad theta)/tan^2theta=1/sqrt3int(secthetad theta)/tantheta=1/sqrt3int1/costheta(costheta/sintheta)d theta=1/sqrt3intcscthetad theta#

This is a common integral:

#I=-1/sqrt3lnabs(csctheta+cottheta)#

Note that #sectheta=x/sqrt3#, thus we have a right triangle where #x# is the hypotenuse, #sqrt3# is the side adjacent to #theta#, and the opposite side is #sqrt(x^2-3)#.

Thus:#" "csctheta=x/sqrt(x^2-3)" "#and#" "cottheta=sqrt3/sqrt(x^2-3)#

#I=-1/sqrt3lnabs(x/sqrt(x^2-3)+sqrt3/sqrt(x^2-3))#

#I=-1/sqrt3lnabs((x+sqrt3)/sqrt(x^2-3))#

(Technical note. This almost could be a final answer, but there is one problem, which is that #sqrt(x^2-3)# in the answer restricts the domain, in that we see that the domain excludes #-sqrt3 < x < sqrt3#. This is not the case in the original function, but the trigonometry introduced this issue. To remedy this, add absolute value bars.)

#I=-1/sqrt3lnabs((x+sqrt3)/sqrt(abs(x^2-3)))#

This is a proper final answer. However, we can simplify it rather sneakily:

#I=-1/sqrt3lnabs(sqrt((x+sqrt3)^2/(abs(x^2-3)))#

The square root is a #1/2# power, which can be brought from the logarithm rule: log(A^B)=Blog(A)#.

#I=-1/(2sqrt3)lnabs((x+sqrt3)^2/(x^2-3))#

#I=-1/(2sqrt3)lnabs((x+sqrt3)^2/((x+sqrt3)(x-sqrt3)))#

#I=-1/(2sqrt3)lnabs((x+sqrt3)/(x-sqrt3))#

We can also use the previous rule in reverse: #Blog(A)=log(A^B)#, to bring the #-1# power in and flip the fraction:

#I=1/(2sqrt3)lnabs((x-sqrt3)/(x+sqrt3))+C#