How do you integrate #1/(x^2sqrt(x^2 - 4))# using trig substitution?

I believe the correct substitution is 2sec#theta# but I can't get the equation simple enough to try u-substitution or just integrate in trig.

My simplest equation:
#int(2secthetatantheta)/(4sec^2thetasqrt(4tan^2theta))d theta#

1 Answer
Apr 18, 2017

# sqrt(x^2-4)/(4x)+C.#

Explanation:

I will proceed further from where the Questioner has derived the

simplest integral, i.e.,

#I=int(2secthetatantheta)/{4sec^2theta*2tantheta)d(theta)#

#=1/4int1/sectheta d(theta)#

#=1/4intcosthetad(theta)#

#=1/4sintheta#

Now, #sectheta=x/2 rArr costheta=2/x#

#:. sintheta=sqrt(1-cos^2theta)=sqrt(1-4/x^2)=sqrt(x^2-4)/x#

#:. I=sqrt(x^2-4)/(4x)+C.#

Enjoy Maths.!