How do you integrate?

enter image source here

1 Answer
Mar 11, 2018

Use the substitution #x+1=2sin2theta#.

Explanation:

Let

#I=intdx/(xsqrt(3-2x-x^2))#

Complete the square in the square root:

#I=intdx/(xsqrt(4-(x+1)^2))#

Apply the substitution #x+1=2sin2theta#:

#I=int(4cos2thetad theta)/((2sin2theta-1)(2cos2theta))#

Simplify:

#I=2int(d theta)/(4sinthetacostheta-1)#

Rearrange:

#I=2int(sec^2thetad theta)/(4tantheta-sec^2theta)#

Apply the identity #sec^2theta=tan^2theta+1#:

#I=2int(sec^2thetad theta)/(4tantheta-tan^2theta-1)#

Complete the square in the denominator:

#I=2int(sec^2thetad theta)/(3-(tantheta-2)^2)#

Apply the difference of squares #(a^2-b^2)=(a+b)(a-b)#:

#I=2int(sec^2thetad theta)/((sqrt3+tantheta-2)(sqrt3-tantheta+2))#

Apply partial fraction decomposition:

#I=1/sqrt3int(1/(sqrt3+tantheta-2)+1/(sqrt3-tantheta+2))sec^2thetad theta#

Integrate directly:

#I=1/sqrt3{ln|sqrt3+tantheta-2|-ln|sqrt3-tantheta+2|}+C#

Combine terms:

#I=1/sqrt3ln|(sqrt3+tantheta-2)/(sqrt3-tantheta+2)|+C#

Rearrange:

#I=1/sqrt3ln|(sqrt3+tantheta-2)/(sqrt3-tantheta+2)*(sqrt3-tantheta+2)/(sqrt3-tantheta+2)|+C#

Simplify:

#I=1/sqrt3ln|(3-(tantheta-2)^2)/(sqrt3-tantheta+2)^2|+C#

Rearrange:

#I=1/sqrt3ln|(3-(tantheta-2)^2)/(sqrt3-tantheta+2)^2*cos^2theta/cos^2theta|+C#

Simplify:

#I=1/sqrt3ln|(2sin2theta-1)/((2+sqrt3)costheta-sintheta)^2|+C#

Separate terms:

#I=1/sqrt3ln|2sin2theta-1|-1/sqrt3ln|((2+sqrt3)costheta-sintheta)^2|+C#

Expand:

#I=1/sqrt3ln|2sin2theta-1|-1/sqrt3ln|(2+sqrt3)^2cos^2theta+sin^2theta-2(2+sqrt3)^2sinthetacostheta|+C#

Rescale #C#:

#I=1/sqrt3ln|2sin2theta-1|-1/sqrt3ln|((2+sqrt3)^2cos^2theta+sin^2theta-2(2+sqrt3)sinthetacostheta)*(4-2sqrt3)|+C#

Simplify:

#I=1/sqrt3ln|2sin2theta-1|-1/sqrt3ln|4+2sqrt3(cos^2theta-sin^2theta)-4sinthetacostheta|+C#

Apply the double-angle trigonometric identities:

#I=1/sqrt3ln|2sin2theta-1|-1/sqrt3ln|4+2sqrt3cos2theta-2sin2theta|+C#

Reverse the substitution:

#I=1/sqrt3ln|x|-1/sqrt3ln|sqrt(9-6x-3x^2)-x+3|+C#