How do you integrate #(4x^2-x+3)/((x+5)(x-1)(x-2))# using partial fractions?

1 Answer
Aug 28, 2016

#-ln|x-1|+17/7ln|x-2|+18/7ln|x+5|+K#, or,

#ln|((x+5)^(18/7)(x-2)^(17/7))/(x-1)|+K#.

Explanation:

Let #I=int(4x^2-x+3)/((x+5)(x-1)(x-2))dx#.

We will use the Method of Partial Fraction to split the Integrand

#(4x^2-x+3)/((x+5)(x-1)(x-2))=A/(x-1)+B/(x-2)+C/(x+5);#

where, #A,B,C in RR#.

To determine, #A,B,C#, let us use Heavyside's Cover-up Method :-

#A=[(4x^2-x+3)/((x+5)(x-2))]_(x=1)=6/-6=-1#;

#B=[(4x^2-x+3)/((x+5)(x-1))]_(x=2)=17/7#;

#C=[(4x^2-x+3)/((x-1)(x-2))]_(x=-5)=108/((-6)(-7))=18/7#.

Therefore, #I=int[-1/(x-1)+(17/7)/(x-2)+(18/7)/(x+5)]dx#

#=-ln|x-1|+17/7ln|x-2|+18/7ln|x+5|+K#, or,

#=ln|((x+5)^(18/7)(x-2)^(17/7))/(x-1)|+K#.

Enjoy Maths.!