How do you integrate by parts #(x*e^(4x)) dx#?
1 Answer
Aug 29, 2015
Explanation:
Remember that the formula that allows you to integrate a function by parts looks like this
#color(blue)(int(u * dv) = u * v - int(v * du))" "# , where
So, you need to identify
If you take
#u = x implies du = dx#
and
#dv = e^(4x) implies v = int(e^(4x)dx) = 1/4 * e^(4x)#
Your target integral will thus be
#int(x * e^(4x)dx) = x * 1/4 * e^(4x) - int(1/4 e^(4x) * dx)#
#int(x * e^(4x)dx) = 1/4 * x * e^(4x) - 1/4 * 1/4 * e^(4x) + c#
#int(x * e^(4x)dx) = 1/4e^(4x)(x - 1/4) + c#
#int(x * e^(4x)dx) = color(green)(1/16 * e^(4x) * (4x-1) + c)#