How do you integrate dx/(sin2x+tan2x)?

2 Answers
Feb 23, 2018

The answer is #=+1/8ln(|1-cos(2x)|)+1/8ln(|1+cos(2x)|)-1/(4(1+cos(2x)))+C#

Explanation:

Perform the substitution

#u=2x#,#=>#, #du=2dx#

Therefore,

#int(dx)/(sin2x+tan2x)=1/2int(du)/(sinu+tanu)#

#tanu=sinu/cosu#

#sin^2u=1-cos^2u#

So,

#int(dx)/(sin2x+tan2x)=1/2int(du)/(sinu+sinu/cosu)#

#=1/2int(cosudu)/(sinucosu+sinu)#

#=1/2int(cosusinudu)/(sin^2u(1+cosu))#

#=1/2int(cosusinudu)/((1-cos^2u)(1+cosu))#

Let #v=cosu#, #=>#, #dv=-sinudu#

Therefore,

#int(dx)/(sin2x+tan2x)=-1/2int(vdv)/((1-v^2)(1+v))#

Perform the partial fraction decomposition

#(v)/((1-v^2)(1+v))=(v)/((1-v)(1+v)^2)#

#=A/(1-v)+B/(1+v)+C/(1+v)^2#

#=(A(1+v)^2+B(1+v)(1-v)+C(1-v))/((1-v)(1+v)^2)#

Comparig the numerators

#v=A(1+v)^2+B(1+v)(1-v)+C(1-v)#

Let #v=1#, #=>#, #1=4A#, #=>#, #A=1/4#

Let #v=-1#, #=>#, #-1=-2C#, #=>#, #C=1/2#

Coefficients of #v^2#

#0=A-B#, #=>#, #B=-1/4#

Therefore,

#(v)/((1-v^2)(1+v))=(1/4)/(1-v)-(1/4)/(1+v)+(1/2)/(1+v)^2#

So,

#int(dx)/(sin2x+tan2x)=-1/2(int(1/4dv)/(1-v)-int(1/4dv)/(1+v)+int(1/2dv)/(1+v)^2)#

#=+1/8ln(1-v)+1/8ln(1+v)-1/4*1/(1+v)#

#=+1/8ln(|1-cos(2x)|)+1/8ln(|1+cos(2x)|)-1/(4(1+cos(2x)))+C#

Feb 23, 2018

#1/4Ln(tanx)-1/8(secx)^2+C#

Explanation:

#int dx/(sin2x+tan2x)#

=#1/2int (2dx)/(sin2x+tan2x)#

After using #y=2x# and #dy=2dx# transforms, this integral became

#1/2int dy/(siny+tany)#

=#1/2int dy/(siny+siny/cosy)#

=#1/2int (cosy*dy)/(siny*cosy+siny)#

=#1/2int (cosy*dy)/(siny*(1+cosy))#

=#1/2int (cosy*siny*dy)/[(siny)^2*(1+cosy)]#

=#1/2int (cosy*siny*dy)/([1-(cosy)^2]*(1+cosy))#

=#1/2int (cosy*siny*dy)/[(1-cosy)*(1+cosy)^2]#

After using #z=cosy# and #dz=-siny*dy# transforms, it became

#-1/2int (z*dz)/[(1-z)*(1+z)^2]#

Now, I decomposed integrand into basic fractions,

#z/[(1-z)*(1+z)^2]=A/(1-z)+B/(1+z)+C/(1+z)^2#

After expanding denominator,

#A*(1+z)^2+B*(1-z^2)+C*(1-z)=z#

Set #z=-1#, #2C=-1#, so #C=-1/2#

Set #z=1#, #4A=1#, so #A=1/4#

Set #z=0#, #A+B+C=0#, so #B=1/4#

Thus,

#-1/2int (z*dz)/[(1-z)*(1+z)^2]#

=#-1/2*[1/4int (dz)/(1-z)+1/4int (dz)/(1+z)-1/2int (dz)/(1+z)^2]#

=#-1/8int (dz)/(1-z)-1/8int (dz)/(1+z)+1/4int (dz)/(1+z)^2#

=#1/8Ln(1-z)-1/8Ln(1+z)-1/4*(1+z)^(-1)+C#

=#1/8Ln((1-z)/(1+z))-1/(4z+4)+C#

=#1/8Ln((1-cosy)/(1+cosy))-1/(4cosy+4)+C#

=#1/8Ln((1-cos2x)/(1+cos2x))-1/(4cos2x+4)+C#

=#1/8Ln[(2(sinx)^2)/(2(cosx)^2)]-1/[8(cosx)^2]+C#

=#1/8Ln[(tanx)^2]-1/8(secx)^2+C#

=#1/4Ln(tanx)-1/8(secx)^2+C#