How do you integrate #(e^x)(cosx) dx#?

1 Answer
Apr 29, 2015

This integral is a cyclic one and has to be done two times with the theorem of the integration by parts, that says:

#intf(x)g'(x)dx=f(x)g(x)-intg(x)f'(x)dx#

We can assume that #f(x)=cosx# and #g'(x)dx=e^xdx#,

#f'(x)dx=-sinxdx#

#g(x)=e^x#,

so:

#I=e^xcosx-inte^x(-sinx)dx=#

#=e^xcosx+inte^xsinxdx=(1)#.

And now...again:

#f(x)=sinx# and #g'(x)dx=e^xdx#,

#f'(x)dx=cosxdx#

#g(x)=e^x#.

So:

#(1)=e^xcosx+[e^xsinx-inte^xcosxdx]=#

#=e^xcosx+e^xsinx-inte^xcosxdx#.

So, finally, we can write:

#I=e^xcosx+e^xsinx-IrArr#

#2I=e^xcosx+e^xsinx-IrArr#

#I=e^x/2(cosx+sinx)+c#.