How do you integrate f(x)=3^xe^(-x+1) using the product rule?

1 Answer
Nov 11, 2016

inte^(xln3-x+1)dx=e^(xln3-x+1)/(ln3-1)

Explanation:

We can rewrite it like thisf(x)=e^(xln3)e^(-x+1) so that we can write inte^(xln3)e^(-x+1)dx and integrating by parts we have
inte^(xln3)e^(-x+1)dx=
=-e^(-x+1)e^(xln3)-int-e^(-x+1)ln3e^(xln3)dx=
-e^(-x+1)e^(xln3)+ln3inte^(xln3-x+1)dx
inte^(xln3-x+1)dx=e^(xln3-x+1)/(ln3-1)