First calculate the indefinite integral
#sqrt(1+1/4x)=sqrt(1/4(4+1/x))=1/2sqrt(4+1/x)#
Perform the substitution
#u=sqrt(4+1/x)#,
#u^2=4+1/x#, #=>#, #1/x=u^2-4#
#du=1/2(4+1/x)^(-1/2)*-1/x^2dx#
#=-1/2*1/u*(u^2-4)^2dx#
Therefore,
#intsqrt(1+1/(4x))=1/2intsqrt(4+1/x)dx#
#=-int(u^2*du)/(u^2-4)^2#
#=-int((u^2-4+4)du)/((u^2-4)^2)#
#=-int(du)/(u^2-4)-int(4du)/(u^2-4)^2#
Perform the decomposition into partial fractions on the first integral
#1/(u^2-4)=1/((u+2)(u-2))=A/(u+2)+B/(u-2)#
#=(A(u-2)+B(u+2))/((u+2)(u-2))#
Comparing the numerators
#1=A(u-2)+B(u+2)#
Let #u=-2#, #=>#, #A=-1/4#
Let #u=2#, #=>#, #B=1/4#
Therefore,
#-int(du)/(u^2-4)=1/4int(du)/(u+2)-1/4int(du)/(u-2)#
#=1/4ln(u+2)-1/4ln(u-2)#
Perform the decomposition into partial fractions on the second integral
#1/(u^2-4)^2=1/((u+2)^2(u-2)^2)#
#=A/(u+2)+B/(u+2)^2+C/(u-2)+D/(u-2)^2#
#=(A(u+2)(u-2)^2+B(u-2)^2+C(u+2)^2(u-2)+D(u+2)^2)/((u+2)^2(u-2)^2)#
Compare the numerators
#1=(A(u+2)(u-2)^2+B(u-2)^2+C(u+2)^2(u-2)+D(u+2)^2)#
Let #u=2#, #=>#, #D=1/16#
Let #u=-2#, #=>#, #B=1/16#
Coefficients of #u^3#
#0=A+C#, #=>#, #A=-C#
Let #u=0#, #=># #1=8A+4B-8C+4D#
#8(A-C)=1-1/2=1/2#
#A-C=1/16#
#A=1/32#
#C=-1/32#
Therefore,
#-int(4du)/(u^2-4)^2=-4int((1/32)/(u+2)+(1/16)/(u+2)^2+(-1/32)/(u-2)+(1/16)/(u-2)^2)du#
#=-1/8ln(u+2)+1/4*1/(u+2)+1/8ln(u-2)+1/4*1/(u-2)#
Putting all together
#intsqrt(1+1/(4x))=1/4ln(u+2)-1/4ln(u-2)-1/8ln(u+2)+1/4*1/(u+2)+1/8ln(u-2)+1/4*1/(u-2)#
#int_0^1sqrt(1+1/(4x))=[1/4ln(u+2)-1/4ln(u-2)-1/8ln(u+2)+1/4*1/(u+2)+1/8ln(u-2)+1/4*1/(u-2)]_2^sqrt5#
#=[1/8ln(u+2)-1/8ln(u-2)+1/(4(u+2))+1/(4(u-2))]_2^sqrt5#
#=1.48#