How do you integrate #int 1/(sqrtx(1+sqrtx)^2dx# from [1,9]?
1 Answer
Jan 14, 2017
Explanation:
#I=int_1^9 1/(sqrtx(1+sqrtx)^2)dx#
We will use the substitution
#I=2int_1^9(1+sqrtx)^(-2)(1/(2sqrtx)dx)#
Before switching from
#I=2int_2^4u^-2du#
Using
#I=2[u^(-1)/(-1)]_2^4=2[-1/u]_2^4=2(-1/4-(-1/2))#
#I=2(-1/4+1/2)=2(1/4)=1/2#